Comprimiendo las energías de ionización atómica

22

Este es un tipo diferente de desafío de compresión. En un normal , debe recrear una lista exactamente. Aquí, puede redondear los valores de la forma que desee. ¿Cuál es el truco? Su puntaje se penaliza en función de cuán incorrecto sea su rendimiento.

Al final de esta pregunta hay una lista de las primeras energías de ionización para los primeros 108 elementos. Su programa, una vez ejecutado, debería generar una copia razonablemente precisa de esta lista. No habrá aportes ni argumentos. Para fines de puntuación, su salida debe ser determinista (la misma salida cada vez).

Formato de salida

Su programa / función debe generar una lista de 108 números, ordenados en orden creciente de número atómico. Esta lista puede estar en cualquier formato apropiado. La fuente de datos a continuación se proporciona en el orden correcto, desde hidrógeno hasta hassio.

Tanteo

Su puntaje será la longitud de su programa en bytes más una penalización por redondeo. Se calcula una penalización de redondeo para cada elemento y se suma para obtener la penalización total.

Como ejemplo, tomemos el número 11.81381. Digamos que su programa genera un valor incorrecto de 11.81299999.

  1. En primer lugar, ambos números se multiplican por la misma potencia de 10 de tal manera que ya no hay un punto decimal en el valor verdadero: 1181381, 1181299.999. Los ceros finales en el valor verdadero se consideran significativos.

  2. A continuación, se toma la diferencia absoluta para determinar el error absoluto: 81.001.

  3. Finalmente, calculamos la penalización de este elemento como max(0, log10(err * 4 - 1)) -> 2.50921. Esta fórmula se eligió de manera tal que un error <0.5 no da penalización (ya que la respuesta es correcta dentro del redondeo), al tiempo que brinda una probabilidad asintótica del 50% de que redondear el número a cualquier decimal en particular proporcionaría un beneficio neto en el puntaje (suponiendo que no otra compresión).

Aquí hay una implementación de Try-It-Online de un programa de cálculo de penalizaciones. La entrada a este programa se proporciona como una lista de números, uno por línea. El resultado de este programa es la penalización total y un desglose de puntuación por elemento.

Datos

La lista de números a continuación son los datos objetivo, en el orden correcto del número atómico 1 al 108.

Fuente

13.598434005136
24.587387936
5.391714761
9.322699
8.2980190
11.260296
14.53413
13.618054
17.42282
21.564540
5.1390767
7.646235
5.985768
8.151683
10.486686
10.36001
12.96763
15.7596112
4.34066354
6.11315520
6.56149
6.82812
6.746187
6.76651
7.434018
7.9024678
7.88101
7.639877
7.726380
9.3941990
5.9993018
7.899435
9.7886
9.752392
11.81381
13.9996049
4.177128
5.69486720
6.21726
6.63390
6.75885
7.09243
7.11938
7.36050
7.45890
8.33686
7.576234
8.993822
5.7863552
7.343917
8.608389
9.00966
10.45126
12.1298431
3.893905548
5.211664
5.5769
5.5386
5.473
5.5250
5.582
5.64371
5.670385
6.14980
5.8638
5.93905
6.0215
6.1077
6.18431
6.254159
5.425871
6.825069
7.549571
7.86403
7.83352
8.43823
8.96702
8.95883
9.225553
10.437504
6.1082871
7.4166796
7.285516
8.414
9.31751
10.7485
4.0727409
5.278424
5.380226
6.3067
5.89
6.19405
6.2655
6.0258
5.9738
5.9914
6.1978
6.2817
6.3676
6.50
6.58
6.65
4.90
6.01
6.8
7.8
7.7
7.6

Líneas de base y consejos

Los datos de origen anteriores son 906 bytes, con ciertas herramientas de compresión capaces de llevarlos a menos de 500 bytes. Las soluciones interesantes son aquellas que intentan realizar redondeos inteligentes, usan fórmulas algebraicas u otras técnicas para generar valores aproximados en menos bytes que la compresión sola. Sin embargo, es difícil juzgar estas compensaciones entre idiomas: para algunos idiomas, la compresión por sí sola puede ser óptima, mientras que muchos otros idiomas pueden carecer de herramientas de compresión, por lo que espero una amplia variación en la puntuación entre idiomas. Esto está bien, ya que sigo la filosofía de "competencia dentro de los idiomas, no entre ellos".

Anticipo que podría ser útil intentar aprovechar las tendencias en la tabla periódica. A continuación se muestra un gráfico que encontré de las energías de ionización, para que pueda ver algunas de estas tendencias.

ingrese la descripción de la imagen aquí

PhiNotPi
fuente
2
Hm, el gráfico muestra algunas tendencias interesantes, tal vez eso sea útil para la compresión ...
Erik the Outgolfer
3
Nota al margen: este es un desafío bastante experimental. El esquema de puntuación es único, espero que funcione bien.
PhiNotPi
Muy buen desafío. Desafortunadamente, la precisión de la referencia es tan alta que las fórmulas de aproximación motivadas físicamente (que realmente no pueden predecir más de dos dígitos) tienen pocas posibilidades de competir contra la compresión literal de los dígitos. (A falta de resolver realmente la ecuación de Schrödinger, por supuesto, lo cual tampoco es muy factible). OMI sería más interesante sin el logaritmo en la fórmula de penalización, por lo que los dígitos altamente significativos son realmente más importantes para acertar.
dejó de girar en sentido contrario a las agujas del reloj
@PhiNotPi El sistema de puntuación no es que la única, la derecha ?
Esolanging Fruit
1
@EsolangingFruit Sí, veo las similitudes. Creo que esto es único en el sentido de que la penalización es "continua", lo que significa que no está simplemente en lo correcto o incorrecto para un resultado en particular, por lo que se trata de encontrar cuánto debe falsificar cada número. (Este esquema de puntuación era mucho más único en 2015 cuando lo hice por primera vez en la zona de pruebas, jajaja).
PhiNotPi

Respuestas:

6

Limpio , 540 bytes + 64.396 Penalización = 604.396

Nota: en aras de la legibilidad, he escapado de cada byte en el [Char]literal ya que la mayoría de ellos no son imprimibles. Sin embargo, se cuentan como un solo byte por escape (excepto el nulo, la comilla y las nuevas líneas) ya que Clean toma naturalmente los archivos de origen de forma independiente de la codificación (excepto los nulos).

import StdEnv,GenLib
c[h:t]=[(toInt h>>i)rem 2\\i<-[0..7]]++c t
c[]=[]
r[]=[]
r l=[7<<29+2^62+sum[d<<p\\d<-l&p<-[32..53]]:r(drop 22l)]
u::Maybe[Real]
u=uncompress{e\\e<-[108:r(c['\145\062\353\227\045\336\021\131\341\224\212\225\230\140\121\241\231\027\321\306\361\254\075\154\161\041\144\255\346\110\371\126\172\155\361\127\152\023\350\222\117\116\341\222\155\357\351\072\341\153\315\025\171\317\141\367\076\232\377\323\206\301\257\235\103\154\157\274\035\010\347\167\142\370\355\074\172\320\347\036\165\262\210\364\177\025\144\176\303\223\143\116\340\270\012\172\062\377\257\141\265\320\342\261\225\347\215\165\044\152\017\011\133\251\027\347\243\307\231\304\165\351\325\035\036\053\010\341\344\131\363\207\072\045\327\012\130\347\167\023\312\023\210\013\347\244\236\020\172\153\362\370\142\123\276\116\226\341\211\245\105\136\145\146\130\367\123\026\312\244\225\347\152\225\145\142\207\164\227\145\360\105\140\201\041\271\141\273\274\230\020\101\166\101\133\171\063\155\302\062\036\061\335\147\130\365\175\201\203\035\357\341\272\172\270\067\047\002\200\223\342\156\230\253\152\347\105\322\335\117\203\220\242\342\316\137\311\247\004\155\164\124\131\205\325\203\116\306\365\170\325\032\143\337\017\331\232\006\266\122\176\305\334\137\214\312\130\035\110\306\206\227\001\000\150\353\121\132\146\246\226\231\071\365\050\140\063\063\333\314\314\307\314\354\231\231\171'])]}

Pruébalo en línea!

Este es el primer desafío en el que he podido utilizar la capacidad de compresión genérica de Clean (técnicamente no es realmente compresión, es serialización binaria) para obtener un beneficio real.

Comencé con una [Real]... una lista de números de coma flotante de 64 bits, los de la pregunta. Después de serializar esta lista, simplifiqué los 10 bits superiores (que eran los mismos para cada número) y la configuración óptima de los 32 bits inferiores en la constante 7<<29+2^62. Los 22 bits restantes por número se tradujeron a 2,75 caracteres cada uno y se codificaron en una cadena.

Esto deja toda la constante comprimida en solo 302 bytes , ¡incluyendo cada escape!

Οurous
fuente
1
Quizás pueda obtener una mejor compresión con CleanSnappy; cloogle.org/src/#CleanSnappy/Snappy / github.com/camilstaps/CleanSnappy
5

Python 3 , 355 + 202353 bytes + 198 penalización = 551

for i in'趐￵㠡愍噢甹靍跄땠㖀侙㹐哜洫毙蛿ꐏⴰ㾤䑎䜕䘻䙱䵤剄刋侈偯懌㹴刼旧斆竼醽⭼㭉䂹䔏䙜䧕䨝䲠䶦囊仟嶡㰽䱴妝巋泍繆⢉㙁㨎㦨㣺㦄㨜㫀㬈䀅㴋㷔㺯㾕䁡䄛㡼䜍亘凞册埘嵙嵃怊沨㾗䴵䯘垗惿濥⩦㛳㠂䆧㵑䁻䄺㺻㸰㹟䂅䅥䉊䎫䒀䔺㌃㺑䛊儳倩伞':print(ord(i)/2665)

Pruébalo en línea!

Utilicé 0xffff (65535)como límite superior porque es el valor máximo que se puede almacenar en un solo carácter unicode de 3 bytes.
Dado que la energía de ionización más alta es ~ 24.587, eso da una relación de 2665.
Para generar la cadena en sí, utilicé el fragmento ''.join([chr(int(round(n*2665)))for n in ionization_energies])(en python2 necesita usar unichr), su consola puede o no puede imprimir los caracteres.


Caracteres de 4 bytes, 462 bytes + 99 de penalización = 561

for i in'򖛬􏿸𻩕񧈞񛳀񼤓򠲊򖩥󀯗󮣬𸶞񔥢񂍻񚋙񴀥񲦹򏝅򮕴𰁌񃨇񈥢񋢔񊨓񊶬񒏒񗚽񗋰񔡂񕞒񧻆񂗠񗘳񬒕񫸬򂬋򚷮𮍚𾿾񄱴񉘳񊱑񎝜񎰡񑛏񒠺񜎠񓳾񣟨񀀯񑏠񟎯񣪶񳧟򆋻𫄹𹩷𽬜𽑕𼢹𽇭𽰄𾛰𾮨񄂄񀷥񁬶񂧎񃤐񄚟񅋼𼁡񋠊񓡆񖿯񖪈񝖑񣌪񣆷񦃬񳝰񃤫񒃁񐦉񝅇񧄳񶹼𭃠𺙈𻡍񅱉񁊈񄡙񅓾񂪑񂅝񂑺񄤃񅟜񆜑񇺀񈲩񉤍𶍍񂟅񋎚񖒚񕋦񔄳':print(ord(i)/45312)

Pruébalo en línea!
La misma idea, pero el valor máximo es0x110000

Barra
fuente
¿Por qué un solo carácter unicode de tres bytes solo almacena 0x100**2valores y no 0x100**3?
Jonathan Frech
Diría que el número atómico más alto actualmente conocido es 118, en este caso el más alto a considerar es 108, no ~ 24. Probablemente quisiste decir energía de ionización en eV.
Jonathan Frech
@JonathanFrech tiene un punto: UTF-8 es una mala elección aquí. Otras codificaciones son más eficientes.
Dennis
4

C, 49 bytes + 626.048 penalización = 675.048

f(i){for(i=0;i<108;)printf("%f\n",5.5+i++/13%2);}

Pruébalo en línea!

Steadybox
fuente
55
37 bytes: f(i){for(i=0;i++<108;)printf("6\n");}; pena: 625.173330827107; total = 662,173330827
Tsathoggua
1
@Tsathoggua Hmm, pensé que lo intenté y obtuve una penalización más alta. Creo que estaba equivocado. f(i){for(i=0;i<108;)puts("6");}hace lo mismo en 31 bytes.
Steadybox
Usted también necesita el i++(en el "31"), pero f(i){for(i=108;i;i--)puts("6");}hace 32.
Jonathan Allan
2
@JonathanAllan Whoops. f(i){for(i=108;i--;)puts("6");}lo vuelve a bajar a 31.
Steadybox
4

CJam (389 bytes + 33.09 penalización => 422.09)

codificado xxd:

0000000: 2256 3232 7c24 1bf9 7116 2f43 c82b 110e  "V22|$..q./C.+..
0000010: 6b93 4525 1cb3 4118 4afc 4d05 5c22 e15a  k.E%..A.J.M.\".Z
0000020: 11bc 563c 38e4 626c 1efb 6b10 c229 0e35  ..V<8.bl..k..).5
0000030: 873d 15df 2f71 36ca 404d 54d9 4979 17ba  .=../[email protected]..
0000040: 4938 a953 6fb6 5f04 75f0 5c22 5c6b 39e5  I8.So._.u.\"\k9.
0000050: 3073 6fbd 343e fb36 4fff 357c 8c36 10f3  0so.4>.6O.5|.6..
0000060: 3b3c 37cd 3f1c 10a1 3f06 933d 0f1d fa3d  ;<7.?...?..=...=
0000070: 67e8 4549 6a9c 2f7f 24be 3f99 4713 e147  g.EIj./.$.?.G..G
0000080: 011c e14f 20d5 577f 668d 2135 30c2 2d47  ...O .W.f.!50.-G
0000090: 45d1 315e bc35 8936 0987 385e d238 7a9f  E.1^.5.6..8^.8z.
00000a0: 3af1 3b55 f441 2cbc 3c4e 8843 7ceb 2e25  :.;U.A,.<N.C|..%
00000b0: 1d93 3a60 15f1 4237 3fb0 4404 f949 e750  ..:`..B7?.D..I.P
00000c0: 423d b21e 265b 7cf6 2958 df2c 4edf 2c27  B=..&[|.)X.,N.,'
00000d0: c32b e42c 992c d32d 1394 2d2e 3cd9 3119  .+.,.,.-..-.<.1.
00000e0: b22e 74c3 2f41 cb30 9630 6ea4 313c dd32  ..t./A.0.0n.1<.2
00000f0: 04a1 2b34 0be1 364c 6fb8 3c32 61af 3e74  ..+4..6Lo.<2a.>t
0000100: e23e 55c3 4160 af43 6f8e 436a f544 733d  .>U.A`.Co.Cj.Ds=
0000110: eb49 e030 6e71 b43b 2ad7 3a24 af41 d345  .I.0nq.;*.:$.A.E
0000120: 5c22 c84a 7f9d 204a 3ea5 2a1d 0dcb 2b05  \".J.. J>.*...+.
0000130: 2cfd 32ba af31 46da 320f ef30 1ab5 2fe5  ,.2..1F.2..0../.
0000140: 2ff7 314a c632 20ba 3278 b6b4 34d1 b5a7  /.1J.2 .2x..4...
0000150: b0b6 bebd bc22 7b69 3235 362b 3262 283b  ....."{i256+2b(;
0000160: 287d 2531 6125 7b32 253a 2b5f 323e 315c  (}%1a%{2%:+_2>1\
0000170: 2b32 6232 405f 2c33 2d5c 323c 3262 2d23  +2b2@_,3-\2<2b-#
0000180: 642f 4e7d 2f                             d/N}/

Básicamente esto es

"MAGIC STRING"{i256+2b(;(}%1a%{2%:+_2>1\+2b2@_,3-\2<2b-#d/N}/

Esto utiliza un formato de punto flotante de ancho variable personalizado para almacenar los números. Dos bits son suficientes para el exponente; la mantisa obtiene de 5 a 47 bits, en múltiplos de 7. El bit restante por byte sirve como separador.

Parece que hay algo de corrupción cuando copio la cadena mágica para hacer una demostración en línea , de modo que obtiene unos 2 puntos de penalización más. Tendré que descubrir cómo construir la URL directamente ...


Programa de generación:

e# Score calculation
{1$`'.+'.%1=,10\#_@*@@*-z 4*1- 0e> ml10ml/0e>}:E;

q~]

e# Custom float format
e# Exponent goes from 2^1 to 2^4, so 2 bits
e# Each byte has 1 bit for continuation, so 7 bits available
e# That means the options for the mantissa are 5 bits, 12 bits, 19 bits, 26 bits, 33 bits, 40 bits, 47 bits
{
  :X
  0\{2/\)\_2<!}g
  e# Stack: exponent mantissa
  2 47#*i2b(;
  e# Stack: exponent mantissa-bits
  W%7/W%Wf%:M
  7,{
    )M<e_
    1_$+2b2@,#d/
  }%
  2 3$#f*
  X\f{E}
  _,,.+
  _:e<
  #)<

  \(4+2b(;\+e_7/
  _,,:!W%\.+2fb:c
}%
""*`

Demostración en línea

Peter Taylor
fuente
Nota para uno mismo: el punto fijo ahorra aproximadamente 1 punto.
Peter Taylor
Nota personal: ¿ajustar la cadena para eliminar el escape "aumenta el error demasiado para que valga la pena?
Peter Taylor
4

Gelatina ,  379361  360 bytes + 0 Penalización = 360

-18 utilizando una observación de Peter Taylor (los valores del orden 10 tienen los primeros 1 o 2, mientras que los valores del orden 1 no).

<3Ḣ‘_L⁵*×Ḍ
“KẸ⁺dzⱮÑ2⁵İ2ṭ¬⁴²¬¶9°ß°øİẆGẊœ%X(¢ṆḢ/8¬Ɗ’b7µ18,-;_3+\⁺Ṭœṗ“SŒƥŻƭ°}MḋṘḥfyɼ{ṅĊLƝġœ⁺ḟ8ḶhỊDṭ&æ%*ɱ¬ =¦ẉ Qh"¶:ḌĊ€ĖṢė°ġṀƬmẓSṃ÷E⁴Ȥ⁼ḋ#ØĖḂ2øzẸżƈ¥Ȧƥ7¢®|ḳẊṆƙƲɦḟɼṖỊɲṁẉɗ6ẇSɗ⁴ẉİt]ẓeṆHṚƑ½>]ɦ~T¢~ẆẆA`/6ƭṡxṠKG£Ḅ+wḃḣỤw×ḌŻƲF>Ụ]5bJḤḟCḞİḶ|ȥ9Ỵ0ụKṗT⁴ƥƁṖı×ṄtTĊG©ṀḥṬƭʂd½ḊȦуŀṣ¹ʋṖẓYL²ṅṿ&ẏdDṬIɦỵ¹b,ḷṣƭ#P'µ{GTƇẹ¥L8SƥÑṆẈėẎßṀḷƓ⁷ðḳċ¿ḶM_ḲẈg9ḢĠi+LṭẹḲẎ¤g<ṘJJĿßæ⁺(ɲỴ3ɲgkSḃIƙṭ.Ỵ&_:cĿƝı’D¤Ç€

Pruébalo en línea!

¿Cómo?

Crea estas dos constantes (también conocidas como nilas):

  • (A) todos los dígitos decimales utilizados (es decir, los números todos unidos ignorando dónde se unen y sus separadores de lugares decimales), y
  • (B) el número de cifras significativas utilizadas por cada número

Luego los usa para reconstruir representaciones de coma flotante de los números.

El programa completo es de esta forma:

<3Ḣ‘_L⁵*×Ḍ
“...’b7µ18,-;_3+\⁺Ṭœṗ“...’D¤Ç€

(donde ...están los números codificados para construir B y A)
y funciona así:

<3Ḣ‘_L⁵*×Ḍ - Link 1, conversion helper: list of digits  e.g. [1,2,9,6,7,6,3]
<3         - less than three?                                [1,1,0,0,0,0,0]
  Ḣ        - head                                            1
   ‘       - increment                                       2
     L     - length                                          7
    _      - subtract                                        -5
      ⁵    - literal ten                                     10
       *   - exponentiate                                    0.00001
         Ḍ - undecimal (convert from base 10)                1296763
        ×  - multiply                                        12.96763
           - i.e. go from digits to a number between 3 and 30

“...’b7µ18,-;_3+\⁺Ṭœṗ“...’D¤Ç€ - Main link: no arguments
“...’                          - base 250 literal = 16242329089425509505495393436399830365761075941410177200411131173280169129083782003564646
     b7                        - to base seven = [2,0,4,3,2,4,2,4,3,2,3,3,4,2,3,5,3,3,0,3,4,2,4,4,1,4,3,4,3,2,1,5,3,5,1,5,0,3,3,3,3,3,3,3,4,3,4,2,3,2,4,5,4,0,1,3,2,4,2,5,4,2,2,4,2,3,4,4,3,3,3,2,3,3,3,3,4,4,3,3,2,0,5,3,5,2,3,1,1,6,2,3,3,3,3,3,3,1,3,3,3,3,2,3,3]
       µ                       - start a new monadic chain, call that x
        18,-                   - integer list literal = [18,-1]
            ;                  - concatenate with x = [18,-1,2,0,4,3,2,4,2,4,3,2,3,3,4,2,3,5,3,3,0,3,4,2,4,4,1,4,3,4,3,2,1,5,3,5,1,5,0,3,3,3,3,3,3,3,4,3,4,2,3,2,4,5,4,0,1,3,2,4,2,5,4,2,2,4,2,3,4,4,3,3,3,2,3,3,3,3,4,4,3,3,2,0,5,3,5,2,3,1,1,6,2,3,3,3,3,3,3,1,3,3,3,3,2,3,3]
             _3                - subtract three = [15,-4,-1,-3,1,0,-1,1,-1,1,0,-1,0,0,1,-1,0,2,0,0,-3,0,1,-1,1,1,-2,1,0,1,0,-1,-2,2,0,2,-2,2,-3,0,0,0,0,0,0,0,1,0,1,-1,0,-1,1,2,1,-3,-2,0,-1,1,-1,2,1,-1,-1,1,-1,0,1,1,0,0,0,-1,0,0,0,0,1,1,0,0,-1,-3,2,0,2,-1,0,-2,-2,3,-1,0,0,0,0,0,0,-2,0,0,0,0,-1,0,0]
                \              - cumulative reduce with:
               +               -   addition    = [15,11,10,7,8,8,7,8,7,8,8,7,7,7,8,7,7,9,9,9,6,6,7,6,7,8,6,7,7,8,8,7,5,7,7,9,7,9,6,6,6,6,6,6,6,6,7,7,8,7,7,6,7,9,10,7,5,5,4,5,4,6,7,6,5,6,5,5,6,7,7,7,7,6,6,6,6,6,7,8,8,8,7,4,6,6,8,7,7,5,3,6,5,5,5,5,5,5,5,3,3,3,3,3,2,2,2]
                               -                 ("B" significant figures, with 1 extra for the very first entry and a missing last entry)
                 ⁺             - repeat (the cumulative addition to get
                               -         partition positions) = [15,26,36,43,51,59,66,74,81,89,97,104,111,118,126,133,140,149,158,167,173,179,186,192,199,207,213,220,227,235,243,250,255,262,269,278,285,294,300,306,312,318,324,330,336,342,349,356,364,371,378,384,391,400,410,417,422,427,431,436,440,446,453,459,464,470,475,480,486,493,500,507,514,520,526,532,538,544,551,559,567,575,582,586,592,598,606,613,620,625,628,634,639,644,649,654,659,664,669,672,675,678,681,684,686,688,690]
                  Ṭ            - untruth (1s at those indices) = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,1]
                           ¤   - nilad followed by link(s) as a nilad:
                     “...’     -   base 250 literal = 1359843400513624587387936539171476193226998298019011260296145341313618054174228221564540513907677646235598576881516831048668610360011296763157596112434066354611315520656149682812674618767665174340187902467878810176398777726380939419905999301878994359788697523921181381139996049417712856948672062172666339067588570924371193873605074589083368675762348993822578635527343917860838990096610451261212984313893905548521166455769553865473552505582564371567038561498058638593905602156107761843162541595425871682506975495717864037833528438238967028958839225553104375046108287174166796728551684149317511074854072740952784245380226630675896194056265560258597385991461978628176367665065866549060168787776
                          D    -   decimal (to base 10) = [1,3,5,9,8,4,3,4,0,0,5,1,3,6,2,4,5,8,7,3,8,7,9,3,6,5,3,9,1,7,1,4,7,6,1,9,3,2,2,6,9,9,8,2,9,8,0,1,9,0,1,1,2,6,0,2,9,6,1,4,5,3,4,1,3,1,3,6,1,8,0,5,4,1,7,4,2,2,8,2,2,1,5,6,4,5,4,0,5,1,3,9,0,7,6,7,7,6,4,6,2,3,5,5,9,8,5,7,6,8,8,1,5,1,6,8,3,1,0,4,8,6,6,8,6,1,0,3,6,0,0,1,1,2,9,6,7,6,3,1,5,7,5,9,6,1,1,2,4,3,4,0,6,6,3,5,4,6,1,1,3,1,5,5,2,0,6,5,6,1,4,9,6,8,2,8,1,2,6,7,4,6,1,8,7,6,7,6,6,5,1,7,4,3,4,0,1,8,7,9,0,2,4,6,7,8,7,8,8,1,0,1,7,6,3,9,8,7,7,7,7,2,6,3,8,0,9,3,9,4,1,9,9,0,5,9,9,9,3,0,1,8,7,8,9,9,4,3,5,9,7,8,8,6,9,7,5,2,3,9,2,1,1,8,1,3,8,1,1,3,9,9,9,6,0,4,9,4,1,7,7,1,2,8,5,6,9,4,8,6,7,2,0,6,2,1,7,2,6,6,6,3,3,9,0,6,7,5,8,8,5,7,0,9,2,4,3,7,1,1,9,3,8,7,3,6,0,5,0,7,4,5,8,9,0,8,3,3,6,8,6,7,5,7,6,2,3,4,8,9,9,3,8,2,2,5,7,8,6,3,5,5,2,7,3,4,3,9,1,7,8,6,0,8,3,8,9,9,0,0,9,6,6,1,0,4,5,1,2,6,1,2,1,2,9,8,4,3,1,3,8,9,3,9,0,5,5,4,8,5,2,1,1,6,6,4,5,5,7,6,9,5,5,3,8,6,5,4,7,3,5,5,2,5,0,5,5,8,2,5,6,4,3,7,1,5,6,7,0,3,8,5,6,1,4,9,8,0,5,8,6,3,8,5,9,3,9,0,5,6,0,2,1,5,6,1,0,7,7,6,1,8,4,3,1,6,2,5,4,1,5,9,5,4,2,5,8,7,1,6,8,2,5,0,6,9,7,5,4,9,5,7,1,7,8,6,4,0,3,7,8,3,3,5,2,8,4,3,8,2,3,8,9,6,7,0,2,8,9,5,8,8,3,9,2,2,5,5,5,3,1,0,4,3,7,5,0,4,6,1,0,8,2,8,7,1,7,4,1,6,6,7,9,6,7,2,8,5,5,1,6,8,4,1,4,9,3,1,7,5,1,1,0,7,4,8,5,4,0,7,2,7,4,0,9,5,2,7,8,4,2,4,5,3,8,0,2,2,6,6,3,0,6,7,5,8,9,6,1,9,4,0,5,6,2,6,5,5,6,0,2,5,8,5,9,7,3,8,5,9,9,1,4,6,1,9,7,8,6,2,8,1,7,6,3,6,7,6,6,5,0,6,5,8,6,6,5,4,9,0,6,0,1,6,8,7,8,7,7,7,6]
                               -                          ("A" all the required digits in order)
                   œṗ          - partition at truthy indices = [[1,3,5,9,8,4,3,4,0,0,5,1,3,6],[2,4,5,8,7,3,8,7,9,3,6],[5,3,9,1,7,1,4,7,6,1],[9,3,2,2,6,9,9],[8,2,9,8,0,1,9,0],[1,1,2,6,0,2,9,6],[1,4,5,3,4,1,3],[1,3,6,1,8,0,5,4],[1,7,4,2,2,8,2],[2,1,5,6,4,5,4,0],[5,1,3,9,0,7,6,7],[7,6,4,6,2,3,5],[5,9,8,5,7,6,8],[8,1,5,1,6,8,3],[1,0,4,8,6,6,8,6],[1,0,3,6,0,0,1],[1,2,9,6,7,6,3],[1,5,7,5,9,6,1,1,2],[4,3,4,0,6,6,3,5,4],[6,1,1,3,1,5,5,2,0],[6,5,6,1,4,9],[6,8,2,8,1,2],[6,7,4,6,1,8,7],[6,7,6,6,5,1],[7,4,3,4,0,1,8],[7,9,0,2,4,6,7,8],[7,8,8,1,0,1],[7,6,3,9,8,7,7],[7,7,2,6,3,8,0],[9,3,9,4,1,9,9,0],[5,9,9,9,3,0,1,8],[7,8,9,9,4,3,5],[9,7,8,8,6],[9,7,5,2,3,9,2],[1,1,8,1,3,8,1],[1,3,9,9,9,6,0,4,9],[4,1,7,7,1,2,8],[5,6,9,4,8,6,7,2,0],[6,2,1,7,2,6],[6,6,3,3,9,0],[6,7,5,8,8,5],[7,0,9,2,4,3],[7,1,1,9,3,8],[7,3,6,0,5,0],[7,4,5,8,9,0],[8,3,3,6,8,6],[7,5,7,6,2,3,4],[8,9,9,3,8,2,2],[5,7,8,6,3,5,5,2],[7,3,4,3,9,1,7],[8,6,0,8,3,8,9],[9,0,0,9,6,6],[1,0,4,5,1,2,6],[1,2,1,2,9,8,4,3,1],[3,8,9,3,9,0,5,5,4,8],[5,2,1,1,6,6,4],[5,5,7,6,9],[5,5,3,8,6],[5,4,7,3],[5,5,2,5,0],[5,5,8,2],[5,6,4,3,7,1],[5,6,7,0,3,8,5],[6,1,4,9,8,0],[5,8,6,3,8],[5,9,3,9,0,5],[6,0,2,1,5],[6,1,0,7,7],[6,1,8,4,3,1],[6,2,5,4,1,5,9],[5,4,2,5,8,7,1],[6,8,2,5,0,6,9],[7,5,4,9,5,7,1],[7,8,6,4,0,3],[7,8,3,3,5,2],[8,4,3,8,2,3],[8,9,6,7,0,2],[8,9,5,8,8,3],[9,2,2,5,5,5,3],[1,0,4,3,7,5,0,4],[6,1,0,8,2,8,7,1],[7,4,1,6,6,7,9,6],[7,2,8,5,5,1,6],[8,4,1,4],[9,3,1,7,5,1],[1,0,7,4,8,5],[4,0,7,2,7,4,0,9],[5,2,7,8,4,2,4],[5,3,8,0,2,2,6],[6,3,0,6,7],[5,8,9],[6,1,9,4,0,5],[6,2,6,5,5],[6,0,2,5,8],[5,9,7,3,8],[5,9,9,1,4],[6,1,9,7,8],[6,2,8,1,7],[6,3,6,7,6],[6,5,0],[6,5,8],[6,6,5],[4,9,0],[6,0,1],[6,8],[7,8],[7,7],[7,6]]
                            Ç€ - call the last link (1) as a monad for €ach = [13.598434005136,24.587387936000002,5.391714761,9.322699,8.298019,11.260295999999999,14.534129999999998,13.618053999999999,17.422819999999998,21.56454,5.1390766999999995,7.646235,5.985767999999999,8.151683,10.486686,10.360009999999999,12.96763,15.759611200000002,4.34066354,6.1131552000000005,6.561490000000001,6.82812,6.746187,6.76651,7.434018,7.902467799999999,7.881010000000001,7.639876999999999,7.72638,9.394199,5.9993018,7.8994349999999995,9.7886,9.752392,11.81381,13.9996049,4.177128,5.6948672,6.2172600000000005,6.633900000000001,6.758850000000001,7.09243,7.1193800000000005,7.360500000000001,7.458900000000001,8.336860000000001,7.5762339999999995,8.993822,5.7863552,7.343916999999999,8.608388999999999,9.00966,10.45126,12.129843099999999,3.893905548,5.211664,5.5769,5.538600000000001,5.473,5.525,5.582,5.6437100000000004,5.670385,6.149800000000001,5.8638,5.939050000000001,6.0215000000000005,6.1077,6.184310000000001,6.254159,5.425871,6.825069,7.549570999999999,7.8640300000000005,7.833520000000001,8.43823,8.967020000000002,8.95883,9.225553,10.437504,6.1082871,7.416679599999999,7.285515999999999,8.414,9.31751,10.7485,4.072740899999999,5.278423999999999,5.3802259999999995,6.3067,5.89,6.194050000000001,6.2655,6.0258,5.973800000000001,5.9914000000000005,6.1978,6.281700000000001,6.3676,6.5,6.58,6.65,4.9,6.01,6.800000000000001,7.800000000000001,7.7,7.6000000000000005]
Jonathan Allan
fuente
" Ya sea que sean del orden 1 o 10 " es fácil: si el primer dígito es 1 o 2, es del orden 10. ¿Eso ayuda al golf aún más, o es más barato desempacar un conjunto de bits?
Peter Taylor
@PeterTaylor no se había dado cuenta, eso seguramente ahorrará algunos bytes, ¡gracias!
Jonathan Allan
3

Jelly , 116 bytes + 429,796016684433 Penalty = 545,796016684433

“tẏØA5X¶tɱḅÐ-ı3OMm⁾¦ȷ #""*00-.Bı0FF_y¤ß÷!"&&)+5,=æ)8=Nc¡ÑÞŒŒŒÞßßñçðıȷñ÷Ø#,//6==@Nȷ*(6AR£ÑØøðñ÷ıııñ÷øþ !€ı#/-,‘+47÷12

Pruébalo en línea!

Nada particularmente espectacular, una lista de índice de página de códigos, “...‘(números entre 0 y 249), a cada uno de los cuales le sumamos 47 , +47y se divide por 12 , ÷12.

Jonathan Allan
fuente
3

Jelly , 164 bytes + 409.846 = 573.846

“?#4ß<Ʋƒ⁻µ`kḞÑ6{ɱ~.ṣ¬⁷Ḷlŀ⁸ẎṘ£ỌgfĖỌƒ⁻ḋN?ḤḞ{ị#qp⁵mp&WṘƙ=/rŻ-vn⁼ẊTị}W;!z€ȦMẊẇİ_D8ỴtṫQAẎḣṬr¥1J3Ƙ~ʋ$ĿẠ7þƭ8ṛM{ịḟƇỵ÷b?°6I@?Ȥ⁾d⁹DẈcȷv5ⱮAJb}øDȯRµ’Ds3Ḍ÷³×⁵$2R;6r⁵¤¤;15r18¤¤¦Y

Pruébalo en línea!

Hay un número comprimido allí que es la concatenación de los primeros tres dígitos de cada energía (incluidos los ceros finales). Obtengo una lista de estos números de tres dígitos y Ds3Ḍluego divido cada uno entre 100 con ÷³. Algunos de los números solo deben dividirse entre 10, por lo que multiplico algunos de estos por 10 para mejorar ligeramente la puntuación ( ×⁵$2R;6r⁵¤¤;15r18¤¤¦).

Versión anterior :

Jelly , 50 bytes + 571,482 pena = 621,482

“¡9;ẋkñ¬nƑḳ_gÐ.RḊụʠṁṬl⁾l>ɼXZĖSṠƈ;cḶ=ß³ṾAiʠʠɼZÞ⁹’DY

Pruébalo en línea!

Redondeó cada energía a su entero de un solo dígito más cercano. Concatenados juntos esto da 995989999958689999467777788889689999466777777889679999456656666666666657888899996778994556666666666677567888. “¡9;ẋkñ¬nƑḳ_gÐ.RḊụʠṁṬl⁾l>ɼXZĖSṠƈ;cḶ=ß³ṾAiʠʠɼZÞ⁹’es un número base 250 que produce esto. DY une los dígitos de este número con nuevas líneas.

dylnan
fuente
3

Java 8, 48 bytes + 625.173330827107 Penalización = 673.173330827107

v->{for(int i=108;i-->0;System.out.println(6));}

Pruébalo en línea.

Versión inicial que imprime 108 veces 6. Intentaré mejorar desde aquí.

Kevin Cruijssen
fuente
3

J , 390 bytes + 183.319 Penalización = 573.319

d=.'5@-103659=-/-02247,...../////1-/1135,-...////0/0-/0124+--------.--....-.///00012.//012,--.-...--......,..///'
f=.'[ZG@=:U]JX-`~/PD~kB+XrjlKzx_hG~ynkq~1e5_k)+DMAY~nB\ M,y5YUOTZ`c.v}"*29JrVvsK~~6K*I<I?j'';F>y3:"~~3<DRZaz!ppf\'
p=.'tj1;p#Iq<M{^Z1c l~''@/q^aH9*~`J}~v8F~gQiGy8~%ye^F`Gt~-~G1ev>R4E$~F{/mKJ[S~HCrfxXkscWHku;t"c IWZF.n1l',9$' '
echo,.(_40+a.i.d)+(100%~_32+a.i.f)+1e4%~_32+a.i.p

Pruébalo en línea!

Redondeé los números a cuatro dígitos decimales y los dividí en una lista para las partes enteras, una lista para los primeros 2 dígitos de la fracción y una para los segundos 2 dígitos de la fracción. Codifiqué cada número con un carácter imprimible. Para la decodificación, simplemente extraigo las partes del ingerer y la fracción de un número de las listas de caracteres asociadas y las vuelvo a armar para flotar.

J , 602 bytes + 0 Penalización = 602

q=.'qy7?JOZp@''T1}Ciz={3L/0rHp/r}`M{m^ZHZSy55MYPBaNcV+\?A%/{eyQxQPkDs8W''@m$\6wZsV%KjI''_9"o\XMCP+vU=S3''c3\IKD@ovEW''4LX2O=>n&dgNktY><Ru_TvNpArL?}Y642=}5Hb"yYsD19$<OP2<|Jo)!8S`^9N3w{Q]968P2VF`[(2HOa%XL*V|,[8PcL)}w8"*l%JNC{amnCNx\yH73(pmJGCDq?8@D$ww{X`t0[o.`$''RB&eXiP|_u#9WBFS%U:3|O.U+is5E$A[c{1MpJ@Dw&^rpM_N:M^:o&!HPX9?0i}{j?%2W20z>Q?AOw!fuTWC"Q{-Er'
f=:3 :0
a=.0$0 while.*#y do.l=.1+{.y
a=.a,<' '-.~":}.l{.y
y=.l}.y
end.a
)
echo;(('.',~":"0)&.>_40+a.i.'5@-103659=-/-02247,...../////1-/1135,-...////0/0-/0124+--------.--....-.///00012.//012,--.-...--......,..///'),.(f 12,10#.inv 94x#._32+a.i.q),.<CR

Pruébalo en línea!

Esta vez fui por un enfoque ligeramente diferente. Divido los números en 2 secuencias: la primera contiene las partes enteras que simplemente están codificadas con un solo carácter imprimible. La segunda corriente contiene todas las partes fraccionarias. Eliminé todos los intervalos entre los dígitos y antepuse cada subcadena con su longitud 1-9 (modifiqué la primera fracción, que tiene 13 dígitos). Luego codifiqué esta lista como un número base 94, la presenté como una lista de caracteres.

Se pueden guardar unos 20 bytes si el verbo se reescribe como tácito.

Galen Ivanov
fuente
2

Chicle , 403 + 9.12 = 412.12

00000000: 1551 5116 c030 04fb 7718 af20 e2fe 17db  .QQ..0..w.. ....
00000010: f2d1 454d 4322 cae7 d8d5 ef4d 142c db87  ..EMC".....M.,..
00000020: 5bdc 2bd8 785d 6cf4 22ec bc32 7167 f43c  [.+.x]l."..2qg.<
00000030: be38 8bf0 c4cb 8345 fb54 4759 9423 f8a6  .8.....E.TGY.#..
00000040: 2dd6 3b93 6919 3ee8 691b 8fba b758 5b47  -.;.i.>.i....X[G
00000050: 236b 6cfc 380b 1a3d 26c0 b278 de04 0845  #kl.8..=&..x...E
00000060: 85f7 c222 fdb0 288b f19d 4344 5a7b f503  ..."..(...CDZ{..
00000070: 6ada e011 1533 69f0 41f4 fdc8 64e8 be8d  j....3i.A...d...
00000080: e02a 0026 6c5d 3a83 7f70 2f1b ab88 8ca7  .*.&l]:..p/.....
00000090: 5fa8 e36a b64d 1425 f73a ee0c aab9 eb1a  _..j.M.%.:......
000000a0: 3b5f 1282 c9ba 9401 8c62 58b4 b5c7 6e24  ;_.......bX...n$
000000b0: 6d1c d7c4 aa7f c626 7e44 d569 8a21 c7d6  m......&~D.i.!..
000000c0: df65 d78f 1157 b495 4ea5 7b28 77ab 4035  .e...W..N.{(w.@5
000000d0: 9d45 561b fdae 9869 e34b d44c ea45 6b31  .EV....i.K.L.Ek1
000000e0: 46c7 63f1 ecfc bd03 645a 4f24 645a a4f6  F.c.....dZO$dZ..
000000f0: 1a56 ceab 7b33 ade1 3202 681b d19f a088  .V..{3..2.h.....
00000100: 1f7a 4b97 1c7d 9952 d1b5 21dc 571c d9dc  .zK..}.R..!.W...
00000110: 2702 a204 a254 f665 08e2 ed0a d451 c2a7  '....T.e.....Q..
00000120: 6344 df39 5c65 98f3 7092 d537 2bc3 897e  cD.9\e..p..7+..~
00000130: 25ac 9a34 7a17 b324 17fb 5238 64d9 79e6  %..4z..$..R8d.y.
00000140: cc94 a475 edbc 3675 6372 45d2 01ec c9ae  ...u..6ucrE.....
00000150: e44c 403c d1da 5eec 841e 6d73 acfd 6d6e  .L@<..^...ms..mn
00000160: 3f8d 94cb 4e39 507c 995a 4f3d ac94 9da8  ?...N9P|.ZO=....
00000170: afa5 cb13 2378 3994 da2d 0a2e 5a35 b754  ....#x9..-..Z5.T
00000180: 0943 9a0b 2b92 d151 1a6a 77a6 9c96 abb3  .C..+..Q.jw.....
00000190: ffc1 07                                  ...

Pruébalo en línea!

ovs
fuente