Hacer un poco continente

11

Imaginemos que tenemos una matriz de bits (que contiene al menos uno 1):

0 1 0 1 1 0 1 0 0 1 0
0 1 0 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 0 1 1 0 1
0 0 0 1 0 1 1 0 0 1 0

Queremos establecer algunos de los bits en esta matriz de modo que forme una gota contigua de 1s, en la que cada uno 1esté conectado directa o indirectamente entre sí a 1través del movimiento ortogonal:

0 1 1 1 1 1 1 0 0 1 0
0 1 0 1 0 0 1 0 1 1 0
0 1 1 0 1 1 1 1 0 1 0
1 1 0 0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 0 0 1 0

(Puede ver esto más claramente si busca 1con la función "buscar" de su navegador).

Sin embargo, también queremos minimizar la cantidad de bits que establecemos.

La tarea

Dada una matriz (o matriz de matrices) de bits o booleanos, devuelve el número mínimo de bits que deben establecerse para crear un continente contiguo de 1s. Debería ser posible pasar de un bit establecido en la matriz a otro solo viajando en una dirección ortogonal a otros bits establecidos.

Este es el , por lo que gana el envío válido más corto (medido en bytes).

Casos de prueba

0 1 0 1 1 0 1 0 0 1 0
0 1 0 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 0 1 1 0 1
0 0 0 1 0 1 1 0 0 1 0
=> 6

1 0 0 0 0 0 1 0 0
1 1 0 0 1 1 1 0 0
1 1 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 1 1 0
1 0 0 0 0 0 1 0 0
=> 4

0 0 0 1 1 1 0 1 1
0 0 1 0 0 0 0 1 0
0 0 1 1 1 1 1 1 0
1 1 0 0 1 1 0 0 0
0 0 1 1 1 0 0 1 1
0 1 1 1 0 0 0 0 0
1 1 1 0 0 1 1 1 0
1 1 1 0 1 1 0 1 1
0 0 0 0 1 0 0 0 1
1 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0 1
0 1 0 0 1 0 1 1 0
0 1 1 1 0 0 0 0 1
=> 8

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
=> 0
Fruta Esolanging
fuente
1
Esto necesita un poco más de explicación. ¿Qué es un "blob contiguo" en una matriz?
NoOneIsHere
11
Como se sabe que el problema es NP-hard , no es un buen problema para el algoritmo más rápido .
Peter Taylor
1
@Peter Taylor y esolangingfruit NP-Hardness
FantaC
1
A la luz de los comentarios de Peter Taylor e HyperNeutrino, y el hecho de que la pregunta actualmente no tiene respuestas, estoy cambiando el método de puntuación al código de golf .
Esolanging Fruit
1
¿Qué debemos hacer si no hay 1en la matriz?
Colera Su

Respuestas:

1

C (gcc), 308 306 bytes

La función frecibe (height, width, flattened array, pointer to ans)y devuelve la respuesta por puntero.

Si no hay 1en la matriz, volverá 0.

#define v A[i]
N,M,K,R,C,T,i,*A;s(x,y){i=x*M+y;if(!(x<0|y<0|x>=N|y>=M|v^1))v=2,s(x,y+1),s(x,y-1),s(x+1,y),s(x-1,y);}g(i){if(C<R){if(i^K){g(i+1);if(!v)C+=v=1,g(i+1),v=0,C--;}else{T=1;for(i=0;i<K&&!v;i++);s(i/M,i%M);for(i=0;i<K;i++)T&=v^1,v=!!v;if(T)R=C;}}}f(n,m,a,b)int*a,*b;{K=R=(N=n)*(M=m),A=a;g(0);*b=R;}

Pruébalo en línea!

Sin golf:

N,M,R,C,T,i,*A; // height, width, result, recursion depth

s(x,y)
{ // depth first search: replace all 1 in the same connected component with 2
    i=x*M+y;
    if(!(x<0|y<0|x>=N|y>=M|A[i]^1)) { // check if out of boundary
        A[i]=2;
        s(x, y+1),s(x, y-1),s(x+1, y),s(x-1, y);
    }
}

g(i)
{ // enumerate all posible solutions
    if(C<R) {
        if(i!=N*M) {
            g(i+1);      // nothing change for this entry
            if (!A[i]) { // set the entry to 1
                C++, A[i]=1;
                g(i+1);
                C--, A[i]=0;
            }
        }
        else {
            T=1;
            for (i=0; i<N*M && !A[i]; i++); // find first non-zero entry
            s(i/M, i%M);     // replace the connected component
            for (i=0; i<N*M; i++) {
                T&=A[i]!=1;   // check if no other components
                A[i]=!!A[i]; // change 2s back to 1
            }
            if (T) R=C;      // update answer
        }
    }
}

f(n,m,a,b)int*a,*b;{
    R=(N=n)*(M=m), A=a;
    g(0);
    *b=R;
}
Colera Su
fuente
0

Python 2 , 611 bytes

Un programa completo que toma una lista de listas a través de la entrada del usuario. Las funciones Iy dcuentan el número de islas en la matriz. El bucle for al final enumera todas las posibilidades de dónde puede cambiar 0s a 1s y, si queda una isla, almacena el número de 1s agregados a la lista C. El mínimo de esa lista es el número mínimo de cambios de bits necesarios para conectar cualquier isla. Es un algoritmo muy lento, por lo que no ejecuta los casos de prueba dados en menores de 60 años (no lo intenté más) pero probé algunos casos de prueba más pequeños (~ 5x5) y parece estar funcionando correctamente. Obtuve el algoritmo de conteo de islas de esta página.

from itertools import*
def d(g,i,j,v):
 v[i][j],R,C=1,[-1,1,0,0],[0,0,-1,1]
 for k in range(4):
	if len(g)>i+R[k]>=0<=j+C[k]<len(g[0]):
	 if v[i+R[k]][j+C[k]]<1and g[i+R[k]][j+C[k]]:v=d(g,i+R[k],j+C[k],v)
 return v
def I(g):
 w=len(g[0])
 v,c=[w*[0]for r in g],0
 for i in range(len(g)*w):
	if v[i/w][i%w]<1and g[i/w][i%w]>0:v=d(g,i/w,i%w,v);c+=1
 return c           
g=input()
C=[]
for p in [list(t)for t in product([0,1],repeat=sum(r.count(0)for r in g))]:
 h,G,x=0,[r[:]for r in g],len(g[0])
 for i in range(x*len(G)):
	if G[i/x][i%x]<1:h+=p[0];G[i/x][i%x]=p[0];del p[0]
 if I(G)<2:
	C.append(h)
print min(C)

Pruébalo en línea!

Versión pregolfed antes de optimizar algunas cosas:

from itertools import*
def d(g,i,j,v):
    v[i][j]=1
    R=[-1,1,0,0]
    C=[0,0,-1,1]
    for k in range(4):
        if len(g)>i+R[k]>=0<=j+C[k]<len(g[0]):
            if v[i+R[k]][j+C[k]]<1:
                if g[i+R[k]][j+C[k]]:
                    v=d(g,i+R[k],j+C[k],v)
    return v
def I(g):
    w=len(g[0])
    v=[[0]*w for r in g]
    c=0
    for i in range(len(g)):
        for j in range(w):
            if v[i][j]<1and g[i][j]>0:
                v=d(g,i,j,v)
                c+=1
    return c           
g=input()
z=sum(r.count(0)for r in g)
f=[list(t)for t in product('01',repeat=z)]
C=[]
for p in f:
    h=0
    G=[r[:]for r in g]
    x=len(G[0])
    for i in range(x*len(G)):
        exec('h+=int(p[0]);G[i/x][i%x]=int(p[0]);del p[0]'*(G[i/x][i%x]<1))
    if I(G)<2:
        C.append(h)
print min(C)
dylnan
fuente