“sklearn rmse” Código de respuesta

Cómo calcular RMSE en la regresión lineal Python

actual = [0, 1, 2, 0, 3]
predicted = [0.1, 1.3, 2.1, 0.5, 3.1]

mse = sklearn.metrics.mean_squared_error(actual, predicted)

rmse = math.sqrt(mse)

print(rmse)
Glorious Guanaco

sklearn rmsle

import numpy as np
from sklearn.metrics import mean_squared_log_error

def rmse(y_true, y_pred):
	np.sqrt(mean_squared_log_error(y_true, y_pred))
Xanthous Xenomorph

sklearn rmse

from sklearn.metrics import mean_squared_error

rms = mean_squared_error(y_actual, y_predicted, squared=False)
Tendo

Calcule la raíz Error cuadrado medio Python

def rmse(predictions, targets):
    return np.sqrt(((predictions - targets) ** 2).mean())
Lonely Leopard

sklearn rmse

from sklearn.metrics import mean_squared_error

mse  = mean_squared_error(y_true, y_pred) 
rmse = mean_squared_error(y_true, y_pred, squared = False)
wolf-like_hunter

Explore las respuestas de código populares por idioma

Explorar otros lenguajes de código