Envío de colores al monitor vga

9

Estoy buscando una manera simple de enviar una señal desde mi arduino a un monitor vga.

¿Cuál sería el método más fácil y qué componentes serían necesarios?

No necesito mostrar una imagen, solo un color sólido.

Terry
fuente
A ver si esto ayuda.
Nick Gammon

Respuestas:

6

Mi página sobre la salida de Arduino Uno al monitor VGA tiene mucha teoría, incluido un boceto que produce barras de color como esta:

Barras de colores


Código

Para producir un solo color es un poco más simple, este boceto lo hizo por mí:

/*
 VGA colour video generation

 Author:   Nick Gammon
 Date:     22nd April 2012
 Version:  1.0

 Connections:

 D3 : Horizontal Sync (68 ohms in series) --> Pin 13 on DB15 socket
 D4 : Red pixel output (470 ohms in series) --> Pin 1 on DB15 socket
 D5 : Green pixel output (470 ohms in series) --> Pin 2 on DB15 socket
 D6 : Blue pixel output (470 ohms in series) --> Pin 3 on DB15 socket
 D10 : Vertical Sync (68 ohms in series) --> Pin 14 on DB15 socket

 Gnd : --> Pins 5, 6, 7, 8, 10 on DB15 socket

*/

#include <TimerHelpers.h>
#include <avr/pgmspace.h>
#include <avr/sleep.h>

const byte hSyncPin = 3;     // <------- HSYNC

const byte redPin = 4;       // <------- Red pixel data
const byte greenPin = 5;     // <------- Green pixel data
const byte bluePin = 6;      // <------- Blue pixel data

const byte vSyncPin = 10;    // <------- VSYNC

const int horizontalBytes = 60;  // 480 pixels wide
const int verticalPixels = 480;  // 480 pixels high

// Timer 1 - Vertical sync

// output    OC1B   pin 16  (D10) <------- VSYNC

//   Period: 16.64 ms (60 Hz)
//      1/60 * 1e6 = 16666.66 µs
//   Pulse for 64 µs  (2 x HSync width of 32 µs)
//    Sync pulse: 2 lines
//    Back porch: 33 lines
//    Active video: 480 lines
//    Front porch: 10 lines
//       Total: 525 lines

// Timer 2 - Horizontal sync

// output    OC2B   pin 5  (D3)   <------- HSYNC

//   Period: 32 µs (31.25 kHz)
//      (1/60) / 525 * 1e6 = 31.74 µs
//   Pulse for 4 µs (96 times 39.68 ns)
//    Sync pulse: 96 pixels
//    Back porch: 48 pixels
//    Active video: 640 pixels
//    Front porch: 16 pixels
//       Total: 800 pixels

// Pixel time =  ((1/60) / 525 * 1e9) / 800 = 39.68  ns
//  frequency =  1 / (((1/60) / 525 * 1e6) / 800) = 25.2 MHz

// However in practice, it we can only pump out pixels at 375 ns each because it
//  takes 6 clock cycles to read one in from RAM and send it out the port.


const byte verticalBackPorchLines = 35;  // includes sync pulse?
const int verticalFrontPorchLines = 525 - verticalBackPorchLines;

volatile int vLine;
volatile byte backPorchLinesToGo;

#define nop asm volatile ("nop\n\t")

// ISR: Vsync pulse
ISR (TIMER1_OVF_vect)
  {
  vLine = 0; 
  backPorchLinesToGo = verticalBackPorchLines;
  } // end of TIMER1_OVF_vect

// ISR: Hsync pulse ... this interrupt merely wakes us up
EMPTY_INTERRUPT  (TIMER2_OVF_vect)

void setup()
  {

  // disable Timer 0
  TIMSK0 = 0;  // no interrupts on Timer 0
  OCR0A = 0;   // and turn it off
  OCR0B = 0;

  // Timer 1 - vertical sync pulses
  pinMode (vSyncPin, OUTPUT); 
  Timer1::setMode (15, Timer1::PRESCALE_1024, Timer1::CLEAR_B_ON_COMPARE);
  OCR1A = 259;  // 16666 / 64 µs = 260 (less one)
  OCR1B = 0;    // 64 / 64 µs = 1 (less one)
  TIFR1 = bit (TOV1);   // clear overflow flag
  TIMSK1 = bit (TOIE1);  // interrupt on overflow on timer 1

  // Timer 2 - horizontal sync pulses
  pinMode (hSyncPin, OUTPUT); 
  Timer2::setMode (7, Timer2::PRESCALE_8, Timer2::CLEAR_B_ON_COMPARE);
  OCR2A = 63;   // 32 / 0.5 µs = 64 (less one)
  OCR2B = 7;    // 4 / 0.5 µs = 8 (less one)
  TIFR2 = bit (TOV2);   // clear overflow flag
  TIMSK2 = bit (TOIE2);  // interrupt on overflow on timer 2

  // prepare to sleep between horizontal sync pulses  
  set_sleep_mode (SLEEP_MODE_IDLE);  

  // pins for outputting the colour information
  pinMode (redPin, OUTPUT);
  pinMode (greenPin, OUTPUT);
  pinMode (bluePin, OUTPUT);

}  // end of setup

// draw a single scan line
void doOneScanLine ()
  {

  // after vsync we do the back porch
  if (backPorchLinesToGo)
    {
    backPorchLinesToGo--;
    return;   
    }  // end still doing back porch

  // if all lines done, do the front porch
  if (vLine >= verticalPixels)
    return;

  PORTD = bit (5) | bit (6);  // cyan (green + blue)
  delayMicroseconds (27);     // one scan line

  PORTD = 0;  // back to black
  // finished this line 
  vLine++;

  }  // end of doOneScanLine

void loop() 
  {
  // sleep to ensure we start up in a predictable way
  sleep_mode ();
  doOneScanLine ();
 }  // end of loop

Como sugirió @ChrisStratton, los temporizadores de hardware son de gran ayuda.


Alambrado

Lo conecté así:

Cableado VGA

Pines VGA


Biblioteca TimerHelpers

La biblioteca TimerHelpers.h se describe en mi página de temporizadores , a continuación hay una copia:

/*
 Timer Helpers library.

Devised and written by Nick Gammon.
Date: 21 March 2012
Version: 1.0

Licence: Released for public use.

See: http://www.gammon.com.au/forum/?id=11504

 Example:

 // set up Timer 1
 TCNT1 = 0;         // reset counter
 OCR1A =  999;       // compare A register value (1000 * clock speed)

 // Mode 4: CTC, top = OCR1A
 Timer1::setMode (4, Timer1::PRESCALE_1, Timer1::CLEAR_A_ON_COMPARE);

 TIFR1 |= bit (OCF1A);    // clear interrupt flag
 TIMSK1 = bit (OCIE1A);   // interrupt on Compare A Match  

*/

#ifndef _TimerHelpers_h
#define _TimerHelpers_h

#include <Arduino.h>

/* ---------------------------------------------------------------
 Timer 0 setup
 --------------------------------------------------------------- */

namespace Timer0 
{
  // TCCR0A, TCCR0B
  const byte Modes [8] [2] = 
  {

  { 0,                         0 },            // 0: Normal, top = 0xFF
  { bit (WGM00),               0 },            // 1: PWM, Phase-correct, top = 0xFF
  {               bit (WGM01), 0 },            // 2: CTC, top = OCR0A
  { bit (WGM00) | bit (WGM01), 0 },            // 3: Fast PWM, top = 0xFF
  { 0,                         bit (WGM02) },  // 4: Reserved
  { bit (WGM00),               bit (WGM02) },  // 5: PWM, Phase-correct, top = OCR0A
  {               bit (WGM01), bit (WGM02) },  // 6: Reserved
  { bit (WGM00) | bit (WGM01), bit (WGM02) },  // 7: Fast PWM, top = OCR0A

  };  // end of Timer0::Modes

  // Activation
  // Note: T0 is pin 6, Arduino port: D4
  enum { NO_CLOCK, PRESCALE_1, PRESCALE_8, PRESCALE_64, PRESCALE_256, PRESCALE_1024, T0_FALLING, T0_RISING };

  // what ports to toggle on timer fire
  enum { NO_PORT = 0, 

    // pin 12, Arduino port: D6
    TOGGLE_A_ON_COMPARE  = bit (COM0A0), 
    CLEAR_A_ON_COMPARE   = bit (COM0A1), 
    SET_A_ON_COMPARE     = bit (COM0A0) | bit (COM0A1),

    // pin 11, Arduino port: D5
    TOGGLE_B_ON_COMPARE  = bit (COM0B0), 
    CLEAR_B_ON_COMPARE   = bit (COM0B1), 
    SET_B_ON_COMPARE     = bit (COM0B0) | bit (COM0B1),
  };


  // choose a timer mode, set which clock speed, and which port to toggle
  void setMode (const byte mode, const byte clock, const byte port)
  {
  if (mode < 0 || mode > 7)  // sanity check
    return;

  // reset existing flags
  TCCR0A = 0;
  TCCR0B = 0;

  TCCR0A |= (Modes [mode] [0]) | port;  
  TCCR0B |= (Modes [mode] [1]) | clock;
  }  // end of Timer0::setMode

}  // end of namespace Timer0 

/* ---------------------------------------------------------------
 Timer 1 setup
 --------------------------------------------------------------- */

namespace Timer1 
{
  // TCCR1A, TCCR1B
  const byte Modes [16] [2] = 
  {

  { 0,                         0 },            // 0: Normal, top = 0xFFFF
  { bit (WGM10),               0 },            // 1: PWM, Phase-correct, 8 bit, top = 0xFF
  {               bit (WGM11), 0 },            // 2: PWM, Phase-correct, 9 bit, top = 0x1FF
  { bit (WGM10) | bit (WGM11), 0 },            // 3: PWM, Phase-correct, 10 bit, top = 0x3FF
  { 0,                         bit (WGM12) },  // 4: CTC, top = OCR1A
  { bit (WGM10),               bit (WGM12) },  // 5: Fast PWM, 8 bit, top = 0xFF
  {               bit (WGM11), bit (WGM12) },  // 6: Fast PWM, 9 bit, top = 0x1FF
  { bit (WGM10) | bit (WGM11), bit (WGM12) },  // 7: Fast PWM, 10 bit, top = 0x3FF
  { 0,                                       bit (WGM13) },  // 8: PWM, phase and frequency correct, top = ICR1    
  { bit (WGM10),                             bit (WGM13) },  // 9: PWM, phase and frequency correct, top = OCR1A    
  {               bit (WGM11),               bit (WGM13) },  // 10: PWM, phase correct, top = ICR1A    
  { bit (WGM10) | bit (WGM11),               bit (WGM13) },  // 11: PWM, phase correct, top = OCR1A
  { 0,                         bit (WGM12) | bit (WGM13) },  // 12: CTC, top = ICR1    
  { bit (WGM10),               bit (WGM12) | bit (WGM13) },  // 13: reserved
  {               bit (WGM11), bit (WGM12) | bit (WGM13) },  // 14: Fast PWM, TOP = ICR1
  { bit (WGM10) | bit (WGM11), bit (WGM12) | bit (WGM13) },  // 15: Fast PWM, TOP = OCR1A

  };  // end of Timer1::Modes

  // Activation
  // Note: T1 is pin 11, Arduino port: D5
  enum { NO_CLOCK, PRESCALE_1, PRESCALE_8, PRESCALE_64, PRESCALE_256, PRESCALE_1024, T1_FALLING, T1_RISING };

  // what ports to toggle on timer fire
  enum { NO_PORT = 0, 

    // pin 15, Arduino port: D9
    TOGGLE_A_ON_COMPARE  = bit (COM1A0), 
    CLEAR_A_ON_COMPARE   = bit (COM1A1), 
    SET_A_ON_COMPARE     = bit (COM1A0) | bit (COM1A1),

    // pin 16, Arduino port: D10
    TOGGLE_B_ON_COMPARE  = bit (COM1B0), 
    CLEAR_B_ON_COMPARE   = bit (COM1B1), 
    SET_B_ON_COMPARE     = bit (COM1B0) | bit (COM1B1),
  };

  // choose a timer mode, set which clock speed, and which port to toggle
  void setMode (const byte mode, const byte clock, const byte port)
  {
  if (mode < 0 || mode > 15)  // sanity check
    return;

  // reset existing flags
  TCCR1A = 0;
  TCCR1B = 0;

  TCCR1A |= (Modes [mode] [0]) | port;  
  TCCR1B |= (Modes [mode] [1]) | clock;
  }  // end of Timer1::setMode

}  // end of namespace Timer1 

/* ---------------------------------------------------------------
 Timer 2 setup
 --------------------------------------------------------------- */

namespace Timer2 
{
  // TCCR2A, TCCR2B
  const byte Modes [8] [2] = 
  {

  { 0,                         0 },            // 0: Normal, top = 0xFF
  { bit (WGM20),               0 },            // 1: PWM, Phase-correct, top = 0xFF
  {               bit (WGM21), 0 },            // 2: CTC, top = OCR2A
  { bit (WGM20) | bit (WGM21), 0 },            // 3: Fast PWM, top = 0xFF
  { 0,                         bit (WGM22) },  // 4: Reserved
  { bit (WGM20),               bit (WGM22) },  // 5: PWM, Phase-correct, top = OCR2A
  {               bit (WGM21), bit (WGM22) },  // 6: Reserved
  { bit (WGM20) | bit (WGM21), bit (WGM22) },  // 7: Fast PWM, top = OCR2A

  };  // end of Timer2::Modes

  // Activation
  enum { NO_CLOCK, PRESCALE_1, PRESCALE_8, PRESCALE_32, PRESCALE_64, PRESCALE_128, PRESCALE_256, PRESCALE_1024 };

  // what ports to toggle on timer fire
  enum { NO_PORT = 0, 

    // pin 17, Arduino port: D11
    TOGGLE_A_ON_COMPARE  = bit (COM2A0), 
    CLEAR_A_ON_COMPARE   = bit (COM2A1), 
    SET_A_ON_COMPARE     = bit (COM2A0) | bit (COM2A1),

    // pin 5, Arduino port: D3
    TOGGLE_B_ON_COMPARE  = bit (COM2B0), 
    CLEAR_B_ON_COMPARE   = bit (COM2B1), 
    SET_B_ON_COMPARE     = bit (COM2B0) | bit (COM2B1),
  };


  // choose a timer mode, set which clock speed, and which port to toggle
  void setMode (const byte mode, const byte clock, const byte port)
  {
  if (mode < 0 || mode > 7)  // sanity check
    return;

  // reset existing flags
  TCCR2A = 0;
  TCCR2B = 0;
  TimerHelpers.h
  TCCR2A |= (Modes [mode] [0]) | port;  
  TCCR2B |= (Modes [mode] [1]) | clock;
  }  // end of Timer2::setMode

}  // end of namespace Timer2 

#endif

Referencias

Nick Gammon
fuente
Solo un seguimiento rápido de la pregunta. ¿Qué debo buscar para obtener una conexión para un cable vga?
Terry
@Terry "conector hembra VGA" (el conector hembra significa que conecta un conector macho)
Avamander
3

Una búsqueda rápida en Google para "Arduino VGA" le dará mucha información. Existen algunas variaciones tanto en los circuitos como en la programación, que también varían en resolución y profundidad de color.

Estaba buscando esto hace unos días, y estos son mis favoritos (hasta ahora):

Si usar un televisor también es una opción plausible, consulte la biblioteca de salida de TV Arduino. Se puede instalar directamente desde el IDE de Arduino y tiene una buena demostración.

Giordano Bruno
fuente
2

No necesitar mostrar una imagen real simplifica las cosas sustancialmente, ya que un Arduino carece de memoria y (excepto en un sentido crudo) el ancho de banda para hacerlo.

Sin embargo, no puede simplemente aplicar un voltaje analógico constante a las líneas R, G y B. No solo tiene que manejar señales de sincronización horizontales y verticales, sino que debe dejar en blanco las señales RGB cuando no está en la parte activa de la pantalla, de lo contrario, el monitor asumirá que su voltaje estable significa "negro" y sus colores durarán solo como breve flash cuando su dispositivo se conecta o habilita por primera vez.

Es probable que generar un gran campo rectangular de color a partir de un Arduino sea bastante desafiante, pero probablemente no imposible. Es posible que pueda utilizar canales PWM de hardware para la horizontal y una "habilitación de color", y contadores de software fuertemente codificados para el aspecto vertical. Luego puede usar la "habilitación de color" para conectar una red de resistencias potencialmente variables para establecer el color único de particular interés.

Chris Stratton
fuente